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In this work, we study the adhesion of multicomponent vesicle membrane to both flat and curved substrates,
based on the conventional Helfrich bending energy for multicomponent vesicles and adhesion potentials of
different forms. A phase field formulation is used to describe the different components of the vesicle. For the
axisymmetric case, a number of representative equilibrium vesicle shapes are computed and a few energy
diagrams are presented which reveal the dependence of the calculated shapes and solution branches on various
parameters including both bending moduli and spontaneous curvatures as well as the adhesion potential
constants. Our computation also confirms a recent experimental observation that the adhesion may promote
phase separation in two-component vesicle membranes.
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I. INTRODUCTION

Adhesion is a fundamental step for many biological pro-
cesses such as exocytosis, endocytosis. Cell adhesion also
plays important roles in drug designs and drug deliveries as
well as many biosensor applications �1,2�. There have been
many experimental and theoretical studies focusing on this
subject �3–7�. While many of the past studies on the vesicle-
substrate adhesion have focused on the case of a flat sub-
strate �8–14�, there have also been some works that address
the complexity of curved substrate. For instance, theoretical
and experimental studies on the binding of a vesicle mem-
brane to micro- or nanoparticles, or colloids have been con-
ducted in �15–19�, where the characteristic spherical sub-
strates have radii much smaller than that of the vesicles. In
�3�, the adhesion of a three-dimensional vesicle to curved
substrates has been studied where the curvature of the sub-
strates is comparable to the curvature of the vesicles. A phase
diagram for bound-unbound transitions has been presented.
In this work, we study the adhesion of multicomponent
vesicle membranes to both flat and curved substrates. This is
motivated by experimental studies of the modeled subjects.
For instance in a recent experiment conducted by Gordon
et al. �4�, it was observed that a mixed-lipid membrane can
go through a local phase separation above critical demixing
temperature due to its close proximity to a biological or non-
biological surface. That is, adhesion can promote the phase
separation for the mixed-lipid cell or vesicle membranes.

In this work, we develop a phase field model to study the
adhesion of multicomponent vesicle membranes with a sub-

strate through a specified adhesion potential. Following our
recent approach described in �20�, we take the adhesion po-
tential to be a function of distance between the membrane
and the substrate. The strength of adhesion potential is con-
sidered to be distinct for different components. By minimiz-
ing the total energy of the system that includes bending en-
ergy, interfacial line tension, and the adhesion energy, the
equilibrium vesicle shapes can be computed for a variety of
parameter values. As an initial attempt, we consider the case
that both the vesicle membrane and the substrate are axisym-
metric to simplify the computation. We present, in particular,
a number of typical equilibrium two-component axisymmet-
ric vesicle profiles undergoing adhesion. The consistency be-
tween the phase field description and its sharp interface limit
is also briefly discussed. Moreover, a numerical experiment
is conducted to support the conclusion of �4� that the adhe-
sion may promote phase separation for a multicomponent
membrane.

II. MULTICOMPONENT VESICLE MEMBRANE
WITH ADHESION

Equilibrium shapes of a multicomponent vesicle are often
described by minimizing an energy that includes elastic
bending energy of the membrane and the line tension energy
at the interface between the components �21�. For the elastic
bending energy of vesicle membrane, a common form
adopted in the literature is that introduced by Helfrich �22�

Eb = �
�

���H − a�2 + bK�dx , �1�

where � is the membrane surface, H and K are the mean and
Gaussian curvatures of � with � and b being the mean cur-
vature bending modulus and the Gaussian curvature bending
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modulus, respectively, and a is the spontaneous curvature.
For simplicity, we consider the effect of mean curvature
bending modulus and spontaneous curvature only. Thus b is
set to zero and Eq. �1� becomes

Eb = �
�

��H − a�2dx .

In this paper, we focus on two-component vesicle mem-
branes which have the liquid-ordered and the liquid-
disordered phases, and the two phases have distinct bending
moduli and distinct spontaneous curvatures �23–25�. Let �1
and �2 be the parts of the surface representing the two dif-
ferent phases with �1 ,�2 being their corresponding bending
moduli and a1 ,a2 being their corresponding spontaneous cur-
vatures, respectively. The total elastic bending energy for the
two-component vesicle is

Eb = �
�1

�1�H − a1�2dx + �
�2

�2�H − a2�2dx . �2�

The line tension energy, which is essentially an interfacial
energy between the two phases is given as

El = �
�1��2

�dl , �3�

where � is the constant line tension at the interface. Equa-
tions �2� and �3� together define the total energy,

E = Eb + El, �4�

with a minimum of E describing the shape of an equilibrium
two-component closed membrane.

Note that the vesicles or membranes discussed so far are
free and not bounded to other objects. To incorporate the
adhesive interaction with a substrate, an additional energetic
contribution due to adhesion should be added to Eq. �4�

Etotal = �
�1

�1�H − a1�2dx + �
�2

�2�H − a2�2dx

+ �
�1��2

�dl − �
�

W�x�dx , �5�

where

W�x� = �w1 · P�x� , x � �1

w2 · P�x� , x � �2
� �6�

is the adhesion potential which varies with respect to the
position x on �=�1��2. In the above, w1 and w2 are the
corresponding strengths of the adhesion potential experi-
enced by the liquid-ordered and the liquid-disordered phases.
A representative form of W is that of a Leonard-Jones type
potential form given by,

W�x� = �− w1 · 4	
 �

d�x�
��

− 
 �

d�x�
��/2� , x � �1

− w2 · 4	
 �

d�x�
��

− 
 �

d�x�
��/2� , x � �2


 �7�

where d�x� is the distance from x to a flat/curved substrate,
the constant � and the exponent � determine the thickness of
the repulsive region and the rate of change in the adhesion
potential, respectively. While we use the Leonard-Jones po-
tential �7� in most of this paper, to offer a comparison, we
also consider the Gaussian type potential,

W�x� = �w1 exp�− d�x�2/�2� , x � �1

w2 exp�− d�x�2/�2� , x � �2
� �8�

with � a small number. Notice that when � approaches zero,
the adhesion potential converges to a sharp contact potential,
a scenario that has been investigated in earlier studies �3,6�.

A. Phase field formulation

To be able to effectively describe the different phases of
the two-component vesicle, we use a phase field formulation
which has become very popular in recent years in the mod-
eling and simulations of vesicle deformations �20,26–31�. A
phase field function can be used to describe the vesicle with
the phase field bending energy as formulated in �26,27�. Ad-
hesion energy can be incorporated into the phase field for-
mulation as shown in �20�. For multicomponent vesicles, or-
der parameters can be used to describe both the vesicle and
its two components �32�. On the other hand, for a vesicle
with a fixed topology, one can also use a direct �explicit�
surface representation for the vesicle along with an order
parameter �phase field function� to describe the two different
phases of the membrane �30,33�. For the axisymmetric case
considered here, it is particularly effective to adopt a sharp
interface representation of the vesicle surface given by the
revolution of a simple one-dimensional curve with an arc-
length parametrization and a phase field representation of the
different phases on the vesicle which is also a function of the
arc length.

Specifically, let � be the vesicle surface, a phase field
function �=��x� is introduced over � which may be used to
represent either a material composition profile or a fictitious
density of the lipids on the surface of the membrane and
distinguishes between the liquid-ordered and liquid-
disordered phases. As an illustration, we focus on the latter
case so that in the liquid-ordered phase, � is specified to be
+1 and is colored as solid blue in Fig. 1; in the liquid-
disordered phase, � is assigned to be −1 and colored as
dashed red. The phase field formulation described here is
also commonly called diffuse interface approach or the
Landau-Ginzburg formalism with �=��x� as the order pa-
rameter. At the interface between the liquid-ordered and
liquid-disordered phases, � rapidly, but continuously,
changes from +1 to −1. Note that the phase field regularizes
the sharp interface between the two different phases into a
diffused one, and thus provides a more general depiction of
the two-component vesicle in both the mixed and de-mixed
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states. The total energy �5� of the model in terms of the phase
function � is given by

E��� = �
�

�c0 + c1���H − a�c0 + c3���2dx

+ ��
�
	 	

2
�����2 + 
����dx

− �
�

w�c0 + c2��P�d�x��dx , �9�

where the first and third terms are phase field formulas for
elastic bending energy and adhesion energy, respectively.
The term c0+c1� is a phase field representation of �1 and �2.
When x is away from the interfacial region, c0+c1=�1 and
c0−c1=�2. The liquid-ordered phase is stiffer than the liquid-
disordered phase, hence we always assume c1�0. The term
a�c0+c3�� is considered as the phase field analog of sponta-
neous curvature, and

a�c0 + c3� = a1, a�c0 − c3� = a2

if x is away from the interfacial region. Similarly, w�c0
+c2��P�d�x�� is viewed as an approximation of the adhesion
potential W�x�, with

w�c0 + c2� = w1, w�c0 − c2� = w2

when x is far away from the interfacial region. The second
term is a phase field approximation for the line tension en-
ergy where a double well potential function


��� =
1

4	
��2 − 1�2 �10�

is incorporated. ��� is the surface gradient of �, which is the
projection of �� onto the tangent plane of �. Notice that to
make ��� well defined, the function � should be defined
away from the membrane such that d� /dn=0 where n is the
normal vector of �. The enclosed volume and total area of
the membrane are assumed to be invariant. Meanwhile, the
total amount of lipids is conserved. Thus, three constraints
are imposed during the minimization of the total energy �9�:

�
�

dx = A, �
�

dV = Vol, �
�

��x�dx = C . �11�

The constraint ����x�dx=C denotes the difference in the
surface areas of the two phases in the sharp interface limit.

B. Axisymmetric setting

In the present work, we focus on the axisymmetric mem-
brane adhered on a flat/curved substrate. In this setting, the
membrane surface is determined by revolving a two-
dimensional curve. A vesicle with a flat substrate is sche-
matically shown in Fig. 1. The curve is parameterized by the
arc-length s, and the total length of the curve is denoted by ŝ.
The flat substrate is located at z=0 with the two different
phases being distinguished by the dashed red and solid blue
colors. The transition point from dashed red to solid blue is
located at s=s0. The figures on the left and right show dif-
ferent configurations with the solid blue phase and the
dashed red phase being adjacent to the substrate, respec-
tively. For easy reference, we denote the left as red-blue
vesicle membrane, and the right as blue-red vesicle mem-
brane. The tangent angle � is measured from the radial di-
rection and r is the distance of a point on the membrane from
the axis of symmetry.

The mean curvature of the vesicle can be explicitly
expressed by r and � as

H =
1

2

�� +

sin �

r
� ,

where prime represents the derivative with respect to arc-
length s. The line tension energy term in Eq. �9� becomes

2
��
0

ŝ 	 	

2
��2 +

1

4	
��2 − 1�2�rds .

We nondimensionalize all the parameters and choose c0 to
be 1. Then the phase field model �9� is reduced to

E��� = 2
�
0

ŝ

�1 + c1���H − a�1 + c3���2rds + 2
�

��
0

ŝ 	 	

2
��2 +

1

4	
��2 − 1�2�rds

− 2
�
0

ŝ

w�1 + c2��P�d�x��rds . �12�

Additionally, the constraints �11� in the axisymmetric case
lead to

�cos T�� = − r , �13�

with T being the arc-length parameter of the reference unit
sphere,


�
0

ŝ

r2z�ds = Vol, �14�

and

substrates

s = 0

s = s0

s = ŝ s = ŝ

s = s0

s = 0

rr

s s

φ
φ

z z

FIG. 1. �Color online� Schematic diagrams of axisymmetric
two-component adhered vesicle membranes. Solid blue and dashed
red colors indicate the liquid-ordered and the liquid-disordered
phases, respectively. s=s0 specifies the phase boundary. Away from
the interface, the solid blue phase has mean curvature bending
modulus c0+c1 and adhesion potential w�c0+c2�P�d�x��, while the
dashed red phase has mean curvature bending modulus c0−c1 and
adhesion potential w�c0−c2�P�d�x��.
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�
0

ŝ

��s�rds = C . �15�

The pointwise constraint �13�, which is in fact equivalent to
the one in Eq. �11�, is referred as the lateral incompressibility
condition for the membrane �34�.

The shape of the membrane is determined by minimizing
the total energy �12�, subject to constraints �13�–�15�. It sat-
isfies the Euler-Lagrange equations given by

	H̃� +
r�H̃�

r
+ 2H̃�H2 − K� + 2aH̃H�1 + c3���

− 2��H + p + ��H� + �	��2�� − �H�	��2 + 2
����

− w�1 + c2��� �P

�n
− 2HP� = 0, �16�

c1�H − a�1 + c3���2 − 2ac3H̃ + � − c2wP + �

�	− 	
�� +
r���

r
� +

d


d�
� = 0, �17�

where H̃= �1+c1���H−a�1+c3��� and � , p and � are the
three Lagrange multipliers for the three constraints, respec-
tively. The other equations from geometry are �25,35�

�� = 2H −
sin �

r
, r� = cos �, z� = sin � . �18�

Boundary conditions are imposed as follows:

H��0� = H��ŝ� = 0; r�0� = r�ŝ� = 0;

��0� = 0, ��ŝ� = 
; ���0� = ���ŝ� = 0. �19�

III. NUMERICAL EXPERIMENTS

We numerically solve Eqs. �16�–�18� subject to boundary
condition �19� using the MATLAB ODE solver BVP4C. We
tested the convergence of the computed results in our nu-
merical simulation.

A. Adhesion with Leonard-Jones potential

We first present the numerical results of a few adhered
vesicles using the Leonard-Jones adhesion potential.

In the axisymmetric setting, two typical vesicle shapes,
adhered prolate and adhered oblate, are presented. Note that
for single component vesicle membrane, one of these two
shapes is always energetically favorable than the other when
adhesion strength w�wa�v� with wa�v� representing the
critical adhesion strength, and the reduced volume v�v2
with v2 representing the transition volume from adhered sto-
matocyte to adhered oblate �36�. However, for two-
component vesicles, the energetics of adhered prolate and
adhered oblate shapes depend on the competition between
the line tension � and adhesion strength w for a fixed vol-
ume. A phase diagram, for transition between adhered pro-

late and adhered oblate shapes in �−w parameter space, is
shown in Fig. 2.

The other parameters, area=4
, volume=3.0, C=−0.3,
c1=0.4, c2=−0.5, c3=0, a=0, 	=0.01, �=5, and �=0.05 are
fixed. The reason we take blue-red adhered vesicles as rep-
resentative shapes in each stability region is because the axi-
symmetric blue-red adhered vesicle always has lower energy
than the red-blue adhered vesicle for negative values of c2,
which will be shown later on in this subsection. Near w
=0.5, the two-component axisymmetric adhered oblate
vesicle transits into an almost free vesicle. By almost we
mean the vesicle is adhered to the substrate only at the two
tips of a cross sectional view �note that the free oblate is
convex in the blue part and concave in the red part with the
given parameters�. Referring to the discussion in �37�, we
believe that when the axisymmetric adhered oblate is ener-
getically favorable than the axisymmetric adhered prolate, it
is more likely a globally minimizer �at least it is in the axi-
symmetric setting�. When the axisymmetric adhered prolate
is favorable, it might be only a local minimizer as the non-
axisymmetric prolate might have lower energy than the axi-
symmetric prolate. However, the nonaxisymmetric prolate is
beyond the scope of our modeling, and we focus on the
axisymmetric adhered oblate shape. We also briefly discuss
the axisymmetric adhered prolate shapes.

In Fig. 3, several numerical solutions for Eqs. �16�–�19�
are shown. The curves are the cross sections of the adhered
oblates with the solid blue region representing the liquid-
ordered phase and the dashed red region representing the
liquid-disordered phase. The corresponding parameter values
used in the experiments are taken as area=4
, volume=3.5,
C=−0.3, �=2, c1=0.4, c3=0, a=0, 	=0.01, �=5, �=0.05.
Note that c1=0.4 implies that the ratio �blue /�red of the mean
curvature bending moduli between the blue and red phases is
1.4/0.6. Moreover, a=0 and c3=0 imply that both phases
have zero spontaneous curvature. Blue-red adhered oblate
vesicles on flat substrate are shown in Fig. 3�a� where c2
=−0.5, that is, wblue /wred=1 /3. Except the adhesion strength
w, all the parameters are kept fixed as specified. Some ad-
hered shapes of red-blue oblate vesicles are shown in Fig.
3�b� for various w and c2=0.5.

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

adhesion strength w

lin
e

te
ns

io
n

σ

axisymmetric blue−red prolate

axisymmetric blue−red oblate

FIG. 2. Phase transition from prolate vesicle to oblate vesicle in
the axisymmetric case. Area=4
, volume=3.0, area difference C
=−0.3, c1=0.4, c2=−0.5 c3=0, a=0, 	=0.01, �=5, �=0.05.
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Figure 4 shows the energy comparison between blue-red
oblate membrane and red-blue one under the influence of
adhesion. Here, area=4
, volume=3.5, C=−0.3, �=2, c1
=0.4, c3=0, a=0, 	=0.01, �=5, �=0.05, w=2.0 are fixed.
The two shapes on the left correspond to parameter
c2=−0.2 with wblue /wred=0.8 /1.2. The blue-red oblate,
which is more deformed from the free oblate shape, has
lower energy and is more energetically favorable than the
red-blue one in this case. On the other hand, the two shapes
on the right correspond to c2=0.5 leading to wblue /wred
=1.5 /0.5. There, the red-blue oblate is more favorable than
the blue-red one.

The energy comparison of the four shapes as discussed
above may lead us to believe that the vesicle whose compo-
nent adjacent to the substrate endures stronger adhesion is

more stable. However, this is not always the case. As seen in
Fig. 4, there is an anomalous region with c2 between zero
and 0.2438, and the blue phases suffer stronger adhesion but
the blue-red oblate is more stable. Outside this region, the
shape with stronger adhesion on the component adjacent to
the substrate is more stable. We observe that the existence of
the region �0, 0.2438� is due to the nonzero values of c1 and
C which model, in the two-component system, the effects
due to the differences in the bending moduli and the surface
areas of the two phases. When both c1 and C approach zero,
which is the limit where both components have the same
bending moduli and equal surface areas, the multicomponent
vesicle reduces into a single component vesicle. And the
anomalous region shrinks to the point c2=0, also the transi-
tion point converges to c2=0.

In addition, the transition point in Fig. 4 strongly depends
on c1 and the adhesion potential w. The dependence of the
transition points on c1 is shown in Fig. 5. For various w
=3.0, 2.0, and 1.0, we plot the transition curve c1 versus c2.
The red-blue adhered oblate, corresponding to the parameter
pair �c1 ,c2� above each curve, is more favorable; while the
blue-red adhered oblate is more favorable if the parameters
c1 ,c2 are chosen from the region below the transition curves.

Figure 5 shows that the transition always occurs for c2
�0. One may wonder if this is universally true for any ad-
hesion potential w. The answer is provided via Fig. 6, the
transition curve w vs c2 for fixed c1=0.4. In Fig. 6, the solid
curve corresponds to the blue-red/red-blue transition for the
adhered oblate vesicle, while the dashed curve corresponds
to blue-red/red-blue transition for the adhered prolate
vesicle. For the oblate vesicle, w varies from 0.59 to 6.5;
while for the prolate vesicle, w varies from 0.00 to 6.5.
Above each transition curve, the red-blue vesicle is the en-
ergetically more favorable one; while below the curve, the
blue-red vesicle is more favorable. The prolate vesicle con-
tinuously changes from a bound state to a free state as w
decreases from 6.5 to 0. As w becomes sufficiently small, the

(A)

z

(B)

r

z

FIG. 3. �Color online� Adhered oblate membrane shapes for
different w. Area=4
, volume=3.5, area difference C=−0.3, �=2,
c1=0.4, c3=0, a=0, 	=0.01, �=5, �=0.05; �a� c2=−0.5, w
=2.0,4.0,8.0, from left to right; �b� c2=0.5, w=2.0,4.0,8.0, from
left to right.
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FIG. 4. �Color online� Energy comparison between blue-red ad-
hered oblate and red-blue adhered one. w=2, c1=0.4 are fixed. c2

varies from −0.2 to 0.5. The solid curve represents energy versus c2

for the red-blue oblate, while the dash curve is for the blue-red
oblate. The shapes of the vesicles at the four end-points of the
curves are shown. Area=4
, volume=3.5, area difference
C=−0.3, �=2, c3=0, a=0, 	=0.01, �=5, �=0.05.
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FIG. 5. Transition curves of blue-red/red-blue adhered oblate for
w=1.0,2.0,3.0. Above each curve, red-blue oblate is more stable;
the blue-red oblate is more stable below the curves. The other pa-
rameter values are: Area=4
, volume=3.5, area difference
C=−0.3, �=2, c3=0, a=0, 	=0.01, �=5, �=0.05.
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prolate vesicle is only adhered via the south pole, but still
energetically lower than the free prolate vesicle. The oblate
vesicle behaves in a different way. As w decreased from 6.5
to 0.59, the lower part of the oblate vesicle are entirely ad-
hered to the substrate. Near w=0.59, the blue-red oblate
vesicle transits into an almost free state which is similar to
the phenomenon in Fig. 2. One may wonder if c2 becomes
negative for large enough values of w. If we assume that c2
becomes negative for some large enough w, then adhesion
energy of the blue-red oblate is much greater than that of
red-blue oblate. Consequently, adhesion energy becomes
dominant over bending and line tension energies, and it is
unlikely that a transition between blue-red and red-blue
vesicles occurs for such values of �w ,c2�. Actually, as w
becomes larger and larger, we numerically reveal that c2 as-
ymptotically goes to 0.31 and 0.00 for prolate and oblate
vesicles, respectively.

We have, so far, considered the phase transition of oblate
vesicles. It is also of interest to study the prolate vesicles and
related stability issues. Due to the similarities in the numeri-
cal experiments, we do not repeat the phase diagram of c1 ,c2
and w for the prolate case. Instead, we consider the effects of
the spontaneous curvature and the substrate curvature
�38,39� and discuss the stability of prolate vesicle under the
influence of these parameters.

In Fig. 7, the flat substrate is now replaced by a
concave-up spherical substrate with radius R=3. Here, area
=4
, volume=2.7, area difference C=0, �=1, c1=0, c2=0,
c3=0.5, a=2 /3, 	=0.01, �=5, and �=0.05. We take w=0
and w=2, respectively, to find both free prolate vesicles and
adhered prolate vesicles. Differing from the previous figures
in this subsection, the red and blue colors in this experiment
indicate the phases having different spontaneous curvatures.
The blue phase has a bigger spontaneous curvature a�1
+c3�=1 while the red phase has a smaller one a�1−c3�
=1 /3. A1 and B1 show the free prolate with specified pa-
rameters. Notice that the red phase, which possesses a
smaller spontaneous curvature, has shapes less elongated
than the blue phase. A2 and B2 are adhered blue-red and

red-blue prolate vesicles. By comparing their total energy,
we find out that the blue-red prolate vesicle with the red
phase at bottom, whose spontaneous curvature matches with
the curvature of the curved substrate, is more stable than the
red-blue prolate vesicle.

We choose here a volume of 2.7, which is smaller than the
previously chosen value of 3.5 because larger osmotic pres-
sure difference makes the effect of spontaneous curvatures
on the vesicle shapes more visible.

Similar to the discussion of stability transition in Figs. 5
and 6, when the spontaneous curvature effect is taken into
account, we can also find the dependence of transition points
on c1 ,c2 ,c3 ,w. Without repeatedly showing many figures,
we present here only the transition curve c3 vs c2 in Fig. 8
with c1=0 ,w=2 fixed. Other parameters are set as area
=4
, volume=2.7, area difference C=0, �=1, a=2 /3, 	
=0.01, �=5, and �=0.05. Above the transition curve, the
red-blue prolate vesicle is more energetically favorable than
the blue-red prolate vesicle; while below the transition curve,
the blue-red prolate vesicle is more favorable.

B. Adhesion with Gaussian potential

Another possible adhesion potential can be applied in our
model is the Gaussian adhesion potential �8�.

Few axisymmetric numerical solutions of prolate vesicles
are presented in Fig. 9. Notice that there is a slight protrusion
of prolate vesicles into the flat substrate. This is due to the
lack of repulsive effect in the Gaussian form of the adhesion
potential.

Convergence of the adhered prolate vesicle as � ap-
proaches zero is presented in Fig. 10. Theoretically, by the
standard asymptotic analysis, � tends to converge to
tanh�

s−s0
�2	

� when 	 approaches zero, where s0 indicates the
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location of the interface which depends on the area differ-
ence C �see Appendix�. Numerically, for relatively larger �,
the shapes of two-component vesicle membranes protrude
into the flat substrate more significantly. As � gets smaller,
the protrusion becomes less visible and finally vanishes in
the limit of �→0, that is the case corresponding to the effec-
tive contact potential �3,6,20�

W�x� = �w d�x� = 0

0 otherwise.
� �20�

The stability transition curves, similar to that obtained
previously for Leonard-Jones type potential, can also be ob-
tained for Gaussian potential. Given the similarities in the
findings, we do not repeat the discussion here.

C. Promotion of phase separation

In this section, three numerical experiments are presented
to support Gordon and co-workers’ experimental observation
that adhesion may promote the phase separation �4�. Similar
discussion can be found in �40–43� where the authors con-
sider planar membranes that are entirely attached to corru-
gated substrates.

The experiments involve the phase field simulations for
relatively large diffuse interface width parameter 	 which is
consistent to the experimental setting. The Leonard-Jones
type adhesion potential is employed in this subsection.

In the first experiment, the function ��s� is viewed as a
chemical composition function, which can be considered as a
compositional fluctuation around a homogeneous state with
composition �0. The constraint �15� is specified as

�
0

ŝ

��s�rds = �
0

ŝ

�0rds . �21�

We now demonstrate that for an equilibrium free oblate
vesicle with associated ��s� almost homogeneous, namely,
��s���0, after adding the adhesion, it displays the phase
separation behavior with ��s� changing into a tanhlike pro-
file representing two distinct phases.

The numerical experiment is presented in Fig. 11. In plots
A1 and A2, for area=4
, volume=3.5, �0=−1 /�3, 	=0.33,
�=5 / �1−0.8�0�, c1=0.8 / �1−0.8�0�, c2=1.0 / �1−1.0�0�, c3
=0, a=0, a free oblate vesicle is computed first. The chemi-
cal composition function � and the associated vesicle profile
shown in plots A1 and A2 correspond to the stable energy
minimum �in the absence of adhesion�. The change in com-
position is relatively small, representing a state of mixed
phases in much of the vesicle. By adding Leonard-Jones ad-
hesion with w=5�1−1.0�0� / �1−0.8�0�, �=0.023, �=5, an
adhered vesicle with associated � corresponding to the new
energy minimizer is shown in plots B1 and B2. A phase
separation occurs with a much more significant phase differ-
ence max���−min���=1.9703 in plot B2. In comparison, we
have max���−min���=0.2345 in plot A2, which is only
11.90% of the phase difference for adhered vesicle. We thus
see that adhesion can significantly promote phase separation.
Furthermore, the bending modulus of the phase-mixed
vesicle �mixed is roughly around 1 / �1−0.8�0�, and the bend-
ing moduli of the phase-separated vesicle are �blue
=2.2649 / �1−0.8�0� and �red=0.6873 / �1−0.8�0�. These pa-
rameter values imply that �red��mixed and �blue /�red
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FIG. 8. Dependence of c2 on c3 for phase transition. Red-blue
prolate is more energetically favorable for �c3 ,c2� from above the
transition curve; while the blue-red prolate is more favorable for
�c3 ,c2� from below the transition curve. area=4
, volume=2.7,
area difference C=0, �=1, c1=0.0, a=2 /3, 	=0.01, �=5, �
=0.05, w=2.
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=3.2954, which agree with the ratios of the bending stiff-
nesses of the ordered, the disordered and the mixed phases
available in the literature �4,23,24,44�.

Another numerical experiment is presented in Fig. 12
where a stairlike substrate is considered. In plots A1 and A2,
for area=4
, volume=3.515, �0=0.5, 	=0.22, �=0.1 / �1
−0.112�0�, c1=0.112 / �1−0.112�0�, c2=0.007 / �1−0.007
�0�, c3=0, a=0, we plot the computed shape of the free
oblate vesicle together with the changes in the associated
mean curvature H along the cross section. Then in plots B1
and B2, we show the computed adhered oblate vesicle with
stairlike substrate where w=110�1−0.112�0� / �1−0.007�0�,
�=0.047, �=5, and the associated mean curvature H. In this
example, both curvature and adhesion play important roles in
the phase separation. The liquid-ordered phase is observed in

the regions where the membrane is either attached to the flat
part of the substrate or in the detached part with lower cur-
vature while the liquid-disordered phase localizes in the re-
gions with high curvature. Similar curvature dependent
phase separation in the context of the adhesion of translation-
ally symmetric membranes and substrates has been observed
in �42�.

The effect of adhesion on phase separation can be further
demonstrated in the next experiment. Here again, we take the
order parameter ��s� to be a labeling function for relative
lipid density which stays within �−1,1�. To model a wider
diffuse interfacial layer corresponding to a relatively large 	
and yet maintain the bound on �, we replace the double well
potential function �10� by the following double obstacle po-
tential function �45�:

�1 + ��ln�1 + �� + �1 − ��ln�1 − �� + ��1 − �2� − 2 ln 2.

�22�

where �=1+2 ln 2 is a constant describing the height of the
potential barrier.

Figure 13 shows a numerical experiment while we choose
	=0.13 so that for unbounded prolate vesicles, there would
be a wide interfacial regions with less dramatic phase sepa-
ration effect. Then for various w=0, 2, and 10, we compute
the corresponding adhered prolate vesicles and the corre-
sponding lipid density functions �. We highlight the densi-
ties near the interfacial region �the boxed portion of the
vesicle profile�. With the plots using the same scaling in the
arc-length, one can see that with a larger adhesion strength
w, the interfacial layer gets narrower and the separation be-
tween the red and blue phases becomes sharper and more
dramatic.

IV. CONCLUSION

In this work, we develop a phase field model for the ad-
hesion of the multicomponent vesicle membrane to a flat/
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curved substrate. Some representative vesicle shapes are pre-
sented. The influence of c2, which measures the contrast of
the adhesion effect for the different phases, on the stability of
membrane shapes is discussed here. It turns out that the mul-
ticomponent vesicle, whose lower part suffers stronger adhe-
sion, is more stable in most cases. We also consider the phase
transition from blue-red vesicle to red-blue vesicle, and the
influence of other parameters such as the relative contribu-
tion of the adhesion and the bending energy. The effect of
spontaneous curvature is also numerically observed by ex-
amining the adhesion of the vesicles on a curved substrate.
We also present vesicle shapes corresponding to the Gauss-
ian type adhesion potential to show that the protrusion of the
vesicles into the substrates occurs if there is a lack of repul-
sive effect in the adhesion potential and it vanishes in the
limit case �→0. Finally, we numerically examine the fact
that adhesion can promote the phase separation for multi-
component vesicle membrane. In the case of adhesion in-
duced phase separation we observe that the liquid-disordered
phase localizes in the regions of the vesicle with high curva-
ture. This was reported earlier for translationally symmetric
membranes and substrates.

Although the numerical studies presented here are fo-
cused on the axisymmetric configuration, the phase field for-
mulation is applicable to more general settings such as in the
study of the interaction between the multicomponent vesicle
and a patterned substrate. It can also be used to extend the
study of membrane-mediated particle interactions �18,19� to
multicomponent vesicles. The present phase field formula-
tion of the multicomponent vesicle and substrate interaction
can also be extended in several directions. For instance, by
incorporating the Gaussian curvature contributions to the
bending energy, fusion of multicomponent vesicles can be
studied. By adding an entropic contribution to the free en-
ergy, we can also consider the weak adhesion regime where
fluctuation of the vesicle shape due to thermal excitation
plays an important role.
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APPENDIX: ASYMPTOTIC ANALYSIS FOR �

In Sec. III, the convergent behavior of the adhered
vesicles as the interfacial width � approaches zero is briefly
mentioned. It is claimed that the phase field function � ap-
proaches tanh�

s−s0
�2	

� as the parameter 	 approaches zero. A
boundary layer calculation is carried out to support such an
observation �46�.

The lipid density function ��s� is governed by the Eq.
�17� and can be rewritten as

	�c1�H − a�1 + c3���2 − 2ac3H̃ + � − c2wP�r

+ ��− 	2���r�� + ��2 − 1��r� = 0 �A1�

An asymptotic analysis in the sharp interface limit is carried

out as follows. For simplicity, we only consider the O�1�
terms for outer and inner layers here. The inner layer and the
outer layer are the regions around the interface and away
from the interface, respectively.

Within the outer layer, � does not change much with re-
spect to the arc-length and we expand ��s� as

��s� � �0�s� + 	�1�s� + . . . , �A2�

We substitute Eq. �A2� into Eq. �A1� and obtain an equation
for �0 at the lowest order:

��0
2 − 1��0r = 0,

whose solutions are �0=0 and �1.
We choose �=1 and �=−1 in the two sides of the inter-

face to represent the blue and red phases, respectively. Here,
let us assume �=−1 in the side s�s0; and �=1 in the side
s�s0.

In the inner layer, we expect � to vary rapidly from −1 to
1 and introduce a new stretched arc-length variable

S =
s − s0

	� ,

where � is an yet undetermined parameter. We now express
� as a function of the stretched variable S and expand � as

�̃�S� � �̃0�S� + 	�̃1�S� + ¯ . �A3�

Notice that

r�s� = r�s0 + 	�S� = r�s0� + 	�Sr��s0� + O�	2�� ,

Upon rewriting Eq. �A1� in terms of the stretched variable S
and, subsequently, using Eq. �A3� we obtain

− 	2−2�r�s0�
d2�̃0

dS2 − 	2−�r��s0�
d

dS

S

d�̃0

dS
� + ��̃0

2 − 1��̃0

��r�s0� + 	�Sr��s0�� + O�	�� = 0. �A4�

There are two possible choices for �. If � balances the sec-
ond and third terms, namely, 2−�=0. Then the leading order
term is

− r�s0�
d2�̃0

dS2 = 0

which implies �̃0=aS+b. However, this solution does not
satisfy the matching conditions

�̃0�− �� = �0�0� = − 1, �̃0�+ �� = �0�ŝ� = 1.

Another choice is to balance the first and third terms of Eq.
�A4�, namely, �=1, and one gets the leading order term

− r�s0�
d2�̃0

dS2 + ��̃0
2 − 1��̃0r�s0� = 0.

If the boundary condition �̃0�−��=−1, �̃0�+��=+1 are im-
posed, a typical solution of the above nonlinear equation,
which satisfies the matching condition, is
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�̃0�S� = tanh
 S
�2

� .

Then the composite solution of Eq. �A1�, given by
inner solution+outer solution−matching solution,
takes on the form

�̃0�S� + �0
−�s� − �0

−�0� + �0
+�s� − �0

+�ŝ� ,

and explicitly

��s� � tanh
 s − s0

�2	
� + . . . .
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